Pre-Clinical Evaluation of a Camsrciadmin Analog MNPR-202 in Diffuse Large B Cell Lymphoma (DLBCL)

J. Lammers1, P. Hoang1, C. Ong1, M. Liu1, P. Jaynes1, R. Naier2, M. Charisi2, W. Chng2,3,4,5, C. Robinson2, A. Jeayasekaran1,3,4,5

1. Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore, 2. Monopar Therapeutics, Wilmette, Illinois, USA, 3. Department of Haematology-Oncology, National University Health System, Singapore, 4. NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 5. Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Background

MNPR-202: Promising DNA Damaging Response Drug Candidate

The standard R-CHOP treatment for DLBCL has a high relapse risk because dose intensity cannot be maintained due to Doxorubicin (Dox) cardiotoxicity. Camsrciadmin, a novel analog of Dox engineered to reduce cardiotoxicity, has shown no signs of irreversible heart damage across two Phase 1 trials (one ongoing) and a Phase 2 trial.

Cardiotoxic Lifetime-Dose Limitation

- Calcium disruption via C13-OH doxorubicin
- Redox cycling at the CS quinone
- Inhibition of topoisomerase II

Present Study Shows Similar Potency in Blood Cancers

Viability of DLBCL Cell Lines

MNPR-202: Previous in vitro Study in Solid Tumors

In vitro IC50s of Doxorubicin and MNPR-202 (µM)

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Cell Type</th>
<th>Dox (µM)</th>
<th>MNPR-202 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD</td>
<td>Non-small cell</td>
<td>0.438</td>
<td>0.468</td>
</tr>
<tr>
<td>SW-221</td>
<td>Non-small cell</td>
<td>4.315</td>
<td>4.589</td>
</tr>
<tr>
<td>SW-620</td>
<td>Non-small cell</td>
<td>0.751</td>
<td>0.540</td>
</tr>
<tr>
<td>T47D</td>
<td>Breast ductal</td>
<td>10.978</td>
<td>8.262</td>
</tr>
<tr>
<td>MESS-DA4</td>
<td>Uterine fibrosarcoma</td>
<td>0.550</td>
<td>0.676</td>
</tr>
<tr>
<td>MESS-DA5</td>
<td>Uterine fibrosarcoma</td>
<td>0.781</td>
<td>0.668</td>
</tr>
</tbody>
</table>

MNPR-202: Induces Increased Apoptosis

Apoptosis Assay by Flow Cytometry

- MNPR-202 demonstrates increased apoptosis in lymphoma cells compared to doxorubicin.

Support for Camsrciadmin’s Toxicity Profile

- No irreversible drug-related clinical cardiotoxicity observed to date in any trial.
- In a prior Phase 2 trial, patients were dosed for up to 16-20 cycles at a dose level of 265 mg/m². The current dose level in the ongoing Phase 3b trial is at 520 mg/m² and continues to escalate.

MNPR-202 Affects DNA Damage Response (DDR)

Elevated DNA Damage and Cell Death Response

- MNPR-202 demonstrates increased DNA damage in lymphoma cells compared to doxorubicin.

Citations & Acknowledgments:

- MNPR-202 Affects DNA Damage Response (DDR)
- Elevated DNA Damage and Cell Death Response
- MNPR-202 vs Dox: Unique Immune Activation Profile
- MNPR-202 Induces Increased Apoptosis
- MNPR-202 vs Dox: Differential Gene Expression Analysis
- Conclusions
- Future Directions